Review Article


Permeability imaging in pediatric brain tumors

Sandi Lam, Yimo Lin, Peter C. Warnke

Abstract

While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in children. In the first part of this paper, we review the technical principles underlying four imaging modalities used to evaluate BBB permeability: PET, dynamic CT, dynamic T1-weighted contrast-enhanced MR imaging, and dynamic T2-weighted susceptibility contrast MR. We describe the data that can be derived from each method, provide some caveats to data interpretation, and compare the advantages and disadvantages of the different techniques. In the second part of this paper, we review the clinical applications that have been reported with permeability imaging data, including diagnosing the nature of a lesion found on imaging (neoplastic versus non-neoplastic, tumor type, tumor grade, recurrence versus pseudoprogression), predicting the natural history of a tumor, monitoring angiogenesis and tracking response to anti-angiogenic agents, optimizing chemotherapy agent selection, and aiding in the development of new antineoplastic drugs and methods to increase local delivery of chemotherapeutics.

Download Citation